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Abstract. The controllability problem of switched linear singular (SLS) systems is in-

vestigated in this paper. Under the regularity condition of all switching subsystems, a
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1 Introduction

During the past few years, the study of switched systems has been revivified
(see e.g. Bengea and DeCarlo [1], Cheng et al [4], De Santis et al [6], Escobar
et al [8], Liberzon and Morse [11], Stanford and Conner [16], Vidal et al
[22]). Various conditions and subtle results on controllability, reachability
and observability etc. are presented in Ezzine and Haddad [7], Ge et al [10],
Sun et al [18], Sun and Zheng [19], and Xie and Wang [24,25], respectively, for
continuous-time periodic, general (non-periodic) switched control systems,
and discrete-time switched control systems.

Switched linear singular (SLS) systems constitute an important class of
switched systems, which arises, for example, in electrical networks and eco-
nomic systems (see e.g. Bedrosian and Vlach [2], Cantó et al [3], Gandolfo [9],
Opal and Vlach [15], Silva and de Lima [17], Tanaka [20], Tolsa and Salichs
[21], Vlach et al [23], and the references therein). Due to the existence of
switching actions, state-inconsistence phenomena often occurs. This may re-
sult in the discontinuity of network variables and in the presence of impulse
voltage and currents at the switching instants. Physically, some problems like
sparks and short circuits etc. may occur (Escobar et al [8]). For dynamic
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economic systems, as pointed out by Cantó et al [3], when the interrelation-
ships among different industrial sectors are described, and the capital and
the demand are variable depending on seasons, the system can be modelled
as a periodically switched singular systems. Therefore, it is very important
to analyze the behavior of the SLS systems.

It is known that by proper design, switching control can improve the
transient response of the systems in some circumstances, especially when the
system cannot be asymptotically stabilized by a single continuous feedback
control law (Morse [12]). Actually, the problems such as how to obtain con-
sistent initial conditions and switching transformation matrices (to express
the discontinuity of the state variables at the switching instants) have already
been investigated by using Laplace transformation and differential-algebraic
equation (Tanaka [20], Tolsa and Salichs [21], Vlach et al [23]).

Due to the complexity of the structure and behavior, the analysis and
synthesis of the SLS systems are more difficult. Especially, state disconti-
nuity, impulse phenomenon and regularity should be considered at the same
time. Recently, some preliminary results on SLS systems have been given
in Meng and Zhang [13,14] and Yin and Zhang [26]. In Meng and Zhang
[13], the case where switching law is designable is considered. Both state
feedback gain matrices and switching laws are designed such that the closed-
loop SLS system admissible and the states continuous. In Meng and Zhang
[14], the reachability of SLS systems is studied, and a necessary condition
and a sufficient condition are obtained. In Yin and Zhang [26], asymptotic
properties, including complexity reduction and limit behavior, of large-scale
hybrid singular systems are analyzed.

This paper is devoted to controllability problem of SLS systems. Based on
the regularity condition, a necessary condition and a sufficient condition on
complete controllability are given by defining an admissible control set and
using the geometric approach. The sufficient condition is generalized to the
complete reachability of the SLS systems and the sufficient condition given in
Meng and Zhang [14] is weakened. It is proved that under certain conditions
for the SLS systems complete controllability and complete reachability are
equivalent.

2 Notations and preliminary results

Consider an SLS control system described by

Eσ(t)ẋ = Aσ(t)x + Bσ(t)uσ(t)(t), (1)

where σ(t) : [0,+∞) → Λ = {1, 2, · · · ,m} is a right-continuous piecewise
constant mapping; x(t) ∈ Rn, ui(t) ∈ Rmi , i ∈ Λ are the state and input,
respectively; Ai ∈ Rn×n, Bi ∈ Rn×mi , Ei ∈ Rn×n, rankEi = ri ≤ n, i ∈ Λ.

Throughout this paper, C denotes the set of all complex numbers; Z+

denotes the set of positive integers; Rn denotes the real n-dimensional space;
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Rn×n denotes the real n× n-dimensional space; for a given vector or matrix
X, XT denotes its transpose; Λ denotes the integer set {1, 2, · · · , m}; Ik

denotes the k×k identity matrix; and for two nonnegative integers j ≥ l and
a square matrix sequence Xk (k = l, · · · , j) with appropriate dimensions,

denote the production XjXj−1 · · ·Xl by
l∏

k=j

Xk.

¿From Dai [5], it is known that a necessary and sufficient condition for the
existence and uniqueness of the solution of (1) is that for all i ∈ Λ, (Ei, Ai)
are regular. So, in this paper, we assume:

Assumption 1 For all i ∈ Λ, (Ei, Ai) are regular, i.e., for every i ∈ Λ,
there exists si ∈ C such that det(siEi −Ai) 6= 0.

By Assumption 1, there exist nonsingular matrices Pi ∈ Rn×n, Qi ∈ Rn×n,
i ∈ Λ, such that

PiEiQi =
[

Ini
0

0 Ni

]
, PiAiQi =

[
Gi 0
0 In−ni

]
, (2)

where Ni ∈ R(n−ni)×(n−ni) is nilpotent with nilpotent index hi; Gi ∈ Rni×ni .
Let Qi = [Q̄i1, Q̄i2], Q−1

i = [QT
i1 QT

i2]
T , and PiBi = [BT

i1 BT
i2]

T with Q̄i1 ∈
Rn×ni , Qi1 ∈ Rni×n, Bi1 ∈ Rni×mi . Then we have Qi1Qi = [Ini

0] and
Qi1Q̄i1 = Ini .

¿From Dai [5], we know that for any fixed regular singular subsystem

Eiẋ = Aix + Biui, x(t0) = x0, (3)

the solution of (3) with the initial value x(t0) = x0 and input ui is:




Qi1x(t) = eGi(t−t0)Qi1x0 +
∫ t

t0

eGi(t−τ)Bi1ui(τ)dτ,

Qi2x(t) = −
hi−1∑

k=1

Nk
i δ(k−1)(t− t0)

(
Qi2x0 −

hi−1∑
r=0

Nr
i Bi2u

(r)
i (t+0 )

)

−
hi−1∑

k=0

Nk
i Bi2u

(k)
i (t),

where f (k)(t) and f (r)(t+) denote the k−derivative and right r−derivative
at t of the generalized function f(t) respectively.

For clarity, let x(t; t0, x0, u, σ) denote the state trajectory at time t of
system (1) starting from t0 with initial value x0, input u and switching law
σ. For any given time interval [t1, t2], suppose that σ(t) has k switching
(discontinuous) points t11, t12, · · · , t1k (t1 < t11 < t12 < · · · < t1k < t2), i.e.
for any t ∈ [t1j , t1(j+1)), σ(t) = σ(t1j) ∈ Λ, σ(t1j) 6= σ(t1(j+1)), j = 0, 1, · · · ,
k − 1, t10 = t1, and for any t ∈ [t1k, t2], σ(t) = σ(t1k) ∈ Λ, then we denote
this switching sequence as {σ(t1j), t1j}k

j=0; and for any given initial value
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x(t1) = x0, time interval [t1, t2], and switching sequence σ = {σ(t1j), t1j}k
j=0,

we define an admissible control set Uσ[t1, t2] as follows:

Uσ[t1, t2] =
{

u : u = [uT
1 , uT

2 , · · · , uT
m]T , ui ∈ Ch−1[t1, t2],

hσ(t1j)−1∑
r=0

Nr
σ(t1j)

Bσ(t1j)2u
(r)
σ(t1j)

(t+1j)

= −Qσ(t1j)2x(t−1j ; t1, x0, u, σ),

j = 0, 1, · · · , k, t−10 = t1

}
,

where h = max{h1, h2, · · · , hm}; Ch[t1, t2] denotes the set of all h-differen-
tiable functions in the time interval [t1, t2]; u

(r)
σ(t1j)

(t+1j) and x(t−1j ; t1, x0, u, σ)
are the right r-derivative of uσ(t1j)(t) at t = t1j and the left limit of x(t; t1, x0,
u, σ) at t = t1j , respectively.

Remark 1 It is clear that when 〈Ni | Bi2〉 = Rn−ni , i = 1, 2, · · · ,m,
there must exist piecewise continuous function u such that the admissible
control set is nonempty. For a general SLS system the problem of exis-
tence of the admissible control is somewhat complicated since it is involved
in the switching sequence and the initial state, and the switched subsystems
itself as well. For instance, in the case where n1 = n2 = · · · = nm = 0,

Pi = Qi = I,
m∑

i=1

〈Ni | Bi2〉 = Rn, 〈Ni | Bi2〉 ∩ 〈Nj | Bj2〉 = {0}, ∀i 6= j, and

〈Ni | Bi2〉 6= Rn, when the initial state belongs to the subspace 〈Ni | Bi2〉,
i = 1, 2, · · · ,m, there does exist a switching sequence that ensures the exis-
tence of an admissible control. But for the other states, there do not exist
such a switching sequence.

Remark 2 For any given switching law σ and time interval [t1, t2], the states
of system (1) are continuous in [t1, t2] under the action of all admissible input
u ∈ Uσ[t1, t2].

Definition 1 SLS system (1) is said completely controllable, if for any given
initial time t0 ∈ R and initial state x0 ∈ Rn, there exist a real number
tf > t0, a switching law σ and an admissible input u ∈ Uσ[t0, tf ], such that
x(tf ; t0, x0, u, σ) = 0.

Definition 2 SLS system (1) is said completely reachable, if for any given
initial time t0 ∈ R and state xf ∈ Rn, there exist a real number tf > t0,
a switching law σ and an admissible input u ∈ Uσ[t0, tf ], such that xf =
x(tf ; t0, 0, u, σ).
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According to the definitions the controllable set and the reachable set can
be defined as follows:

C = {x : ∃ t ≥ t0, σ : [t0, t] → Λ, and u ∈ Uσ[t0, t]
such that x(t; t0, x, u, σ) = 0} .

R = {x : ∃ t ≥ t0, σ : [t0, t] → Λ, and u ∈ Uσ[t0, t]
such that x = x(t; t0, 0, u, σ)} .

Obviously, if there exists an i ∈ Λ such that (Ei, Ai, Bi) is controllable
(reachable), then by setting σ(t) = i, SLS system (1) is completely control-
lable (completely reachable). Thus, without loss of generality, in this paper
we will study only the case where all the subsystems are not controllable
(reachable), that is, ∀i ∈ Λ, (Ei, Ai, Bi) is not controllable (reachable).

For any given matrices A ∈ Rk×k, B ∈ Rk×p, and subspace W ⊆ Rk, de-

noteR(B) the subspace spanned by the columns of B, 〈A | W〉 =
k∑

i=1

Ai−1W,

and 〈A | R(B)〉 as 〈A | B〉 simply. It can be shown that 〈A | W〉 is invariant
with respect to A. For convenience of citation, we introduce the following
subspaces:

V1 =
m∑

i=1

Ci, Vk =
m∑

i=1

Qi(〈Gi | Qi1Vk−1〉 ⊕ 〈Ni | Bi2〉), k = 2, 3, · · · , (4)

where Ci = Qi〈Gi | Bi1〉 ⊕ 〈Ni | Bi2〉, i ∈ Λ, and ⊕ is the direct sum in
vector space. These subspaces have the following properties. The proof of
the lemma is given in the Appendix.

Lemma 1 Under Assumption 1, we have
1. Vi ⊆ Vn, ∀i < n;
2. if there exists 1 < i ≤ n such that Vi = Vi−1, then for all l > i,

Vl = Vi; and
3. Vi = Vn, ∀i > n.

We know that for the regular subsystems (Ei, Ai), i = 1, 2, · · · ,m, the
transformation matrices Pi and Qi are not unique. It is proved that the
subspaces defined in (4) are independent of the choices of matrices Pi and
Qi in Meng and Zhang [14]. A necessary condition and a sufficient condition
were also given for the complete reachability of the SLS systems using the
subspaces defined above as follows.

1. Under Assumption 1, if SLS system (1) is completely reachable, then
Vn = Rn;

2. Under Assumption 1, if 〈Ni | Bi2〉 = Rn−ni , i = 1, 2, · · · ,m and
Vn = Rn, then the SLS system (1) is completely reachable.

In the next sections of this paper, we will present a necessary condition
for the controllability and a sufficient condition for the controllability and
reachability based on Vn.



646 B. Meng and J. F. Zhang

3 Controllability conditions of SLS systems

In this section we will give a necessary condition and a sufficient condition
for the complete controllability of SLS systems.

A necessary condition for complete controllability is summarized in The-
orem 1.

Theorem 1 Under Assumption 1, if SLS system (1) is completely control-
lable, then Vn = Rn.

Proof. Suppose that system (1) is completely controllable. Then by Def-
inition 1, for any given x0 ∈ Rn, there exist a switching sequence σ =
{ij , tj}s

j=0, a time ts+1 > ts, and an admissible input u ∈ Uσ[t0, ts+1], such
that x(ts+1; t0, x0, u, σ) = 0.

Let dk = tk+1 − tk, 0 ≤ k ≤ s. Then from the definition of Uσ[t0, ts+1], it
follows that for all k = 0, 1, · · · , s, x(tk; t0, x0, u, σ) are the consistent initial
states of subsystems (Eik

, Aik
, Bik

) under the action of u.
We now show x(ts; t0, x0, u, σ) ∈ V1. In fact, by

0 = x(ts+1; t0, x0, u, σ)

= Qis




eGis dsQis1x(ts; t0, x0, u, σ)
+

∫ ts+1

ts
eGis (ts+1−τ)Bis1uis

(τ)dτ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
his−1∑
k=0

Nk
is

Bis2u
(k)
is

(ts+1)




,

we have

Qis1x(ts; t0, x0, u, σ) = −
∫ ts+1

ts

eGis (ts−τ)Bis1uis
(τ)dτ,

which together with

Qis2x(ts; t0, x0, u, σ) = −
his−1∑

k=0

Nk
is

Bis2u
(k)
is

(ts),

and the definitions of Qis1 and Qis2 implies that

x(ts; t0, x0, u, σ) = Qis



− ∫ ts+1

ts
eGis (ts−τ)Bis1uis(τ)dτ

−
his−1∑
k=0

Nk
is

Bis2u
(k)
is

(ts)


 . (5)

Furthermore, from Lemma A1 it follows that

x(ts; t0, x0, u, σ) = Qis




nis−1∑
j=0

Gj
is

Bis1

∫ ts+1

ts
fj(ts − τ)uis

(τ)dτ

−
his−1∑
k=0

Nk
is

Bis2u
(k)
is

(ts)


 ,
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where f(·) is a continuous function. So, by the definition of V1 we know that

x(ts; t0, x0, u, σ) ∈ Qis(〈Gis | Bis1〉 ⊕ 〈Nis | Bis2〉) ⊆ V1. (6)

We now investigate the property of x(ts−1; t0, x0, u, σ). By

x(ts; t0, x0, u, σ)

= Qis−1




eGis−1ds−1Qis−11x(ts−1; t0, x0, u, σ)
+

∫ ts

ts−1
eGis−1 (ts−τ)Bis−11uis−1(τ)dτ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
his−1−1∑

k=0

Nk
is−1

Bis−12u
(k)
is−1

(ts)




we have

Qis−11x(ts−1; t0, x0, u, σ) = e−Gis−1ds−1Qis−11x(ts; t0, x0, u, σ)

−
∫ ts

ts−1

eGis−1 (ts−1−τ)Bis−11uis−1(τ)dτ.

This together with

Qis−12x(ts−1; t0, x0, u, σ) = −
his−1−1∑

k=0

Nk
is−1

Bis−12u
(k)
is−1

(ts−1)

gives

x(ts−1; t0, x0, u, σ)

= Qis−1




e−Gis−1ds−1Qis−11x(ts; t0, x0, u, σ)
− ∫ ts

ts−1
eGis−1 (ts−1−τ)Bis−11uis−1(τ)dτ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
his−1−1∑

k=0

Nk
is−1

Bis−12u
(k)
is−1

(ts−1)




. (7)

By (6), Lemma A1 and
∫ ts

ts−1

eGis−1 (ts−1−τ)Bis−11uis−1(τ)dτ ∈ 〈Gis−1 | Bis−11〉 ⊆ 〈Gis−1 | Qis−11V1〉

we have

x(ts−1; t0, x0, u, σ) ∈ Qis−1(〈Gis−1 | Qis−11V1〉 ⊕ 〈Nis−1 | Bis−12〉) ⊆ V2.

Similarly, we can show x(t0; t0, x0, u, σ) ∈ Vs+1. ¿From Lemma 1 we know
that Vs+1 ⊆ Vn, and so, x0 ∈ Vn. Then, by the arbitrariness of x0 we have
Vn = Rn. ¤
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Remark 3 It is worth pointing out that the condition of Theorem 1 is not
sufficient for the controllability of the SLS system (1). For the example given

in Remark 1, from Vn =
m∑

i=1

〈Ni | Bi2〉 and
m∑

i=1

〈Ni | Bi2〉 = Rn it follows

that the necessary condition Vn = Rn is satisfied. From the detail analysis
of the existence of the admissible control in Remark 1 and the definition of
controllability, we know that the system is not controllable.

Now, by using the concept of controllable set and the geometric approach
we would like to give a sufficient condition for the complete controllability
of system (1). For a given switching sequence σ = {ij , tj}s

j=0, ij ∈ Λ, t0 ≤
t1 ≤ · · · ≤ ts+1, define C(ts+1) = 0. Let dj = tj+1 − tj , and C(tj), j =
0, 1, · · · , s, be the sets of states x(tj) of subsystem (Eij

, Aij
, Bij

) under the
action of uij ∈ U2(C(tj+1), [tj , tj+1]). If Qik−12C(tk) ⊆ 〈Nik−1 | Bik−12〉, k =
1, 2, · · · , s, then it follows from the definition of C(tk), k = 0, 1, · · · , s, that for
any x ∈ C(t0), there exists u ∈ Uσ[t0, ts+1] such that x(ts+1; t0, x, u, σ) = 0.
Thus, by the definition of C we have

C(t0) ⊆ C. (8)

In the sequel, denote Hij = Q̄ij1e
−Gij

dj Qij1, dj = tj+1 − tj , j = 0, 1, · · · , s.
Now, we give the geometric characteristic of C(tk), k = 0, 1, · · · , s, in lemmas
2 and 3, whose proofs are put in the Appendix, respectively.

Lemma 2 Under Assumption 1, if 〈Ni | Bi2〉 = Rn−ni , i = 1, 2, · · · ,m,
then

C(tk) =
s∑

l=k+1

l−1∏

j=k

HijCil
+ Cik

.

A switching law σc = (ij , tj)s
j=0, s = lm − 1, l ∈ Z+, l ≥ 2, is said to be

circulatory, if ir ∈ Λ\{i0, i1, · · · , ir−1} and ihm+r = ir, h = 1, 2, · · · , l − 1,
r = 0, 1, · · · ,m− 1. In Lemma 3 below we will investigate the properties of
the controllable set of circulatory switching laws, whose proof is given in Ap-
pendix. Furthermore, we present the geometric character for the controllable
set C in Theorem 2.

Lemma 3 Under Assumption 1, if 〈Ni | Bi2〉 = Rn−ni , i = 1, 2, · · · ,m,
then for any given matrix A, subspace F of proper dimensions, and almost
all d0, d1, · · · , dτz−1 ∈ R,

dim(AC(t0) + F) ≥ dim(AHiτz
C(tτz+1) + AVz + F), (9)

where n̄ =
m−1∑
k=0

nk and τz = n̄z+n̄z−1−2
n̄−1 m− 1, z ≥ 1.



Controllability Conditions for Switched Linear Singular Systems 649

Theorem 2 Under Assumption 1, if 〈Ni | Bi2〉 = Rn−ni , i = 1, 2, · · · ,m,
then the controllable set C of SLS system (1) is a subspace, and

C = Vn. (10)

Proof. By the proof procedure of Theorem 1 we know that for any x ∈ C,
x ∈ Vn. Thus,

C ⊆ Vn. (11)

¿From (8) and Lemma 3, for almost all d0, d1, · · · , dτn−1 ∈ R, dim(C) ≥
dim(C(t0)) ≥ dim(C(tτn

) + Vn) ≥ dim(Vn). This together with (11) gives
(10). ¤

Remark 4 Theorem 2 implies that for any x ∈ Vn, there exist a circu-
latory switching law σc, l ≥ n̄n+n̄n−1−2

n̄−1 , tk+1 = tk + dk, 0 ≤ k ≤ s
(almost all d0, d1, · · · , ds ∈ R), and an admissible control law uσc

such that
x(ts+1; t0, x, uσc

, σc) = 0, i.e., x ∈ C.

¿From Theorem 2 we get the sufficient condition for controllability of the
SLS systems.

Theorem 3 Under Assumption 1, if Vn = Rn and 〈Ni | Bi2〉 = Rn−ni ,
i = 1, 2, · · · ,m, then SLS system (1) is completely controllable.

Remark 5 It is worth noticing that the condition 〈Ni | Bi2〉 = Rn−ni of
Theorem 3 is not necessary for the controllability of the system (1). For
instance, in the case where n1 = n2 = · · · = nm < n; Pi = Qi = I,
i = 1, · · · ,m; Bi2 = 0, i = 1, 2, · · · ,m − 1; 〈Nm | Bm2〉 = Rn−nm , and
m∑

i=1

〈Gi | Bi1〉 = Rn1 . Similar to the analysis of Remark 9 in Meng and

Zhang [14], it can be showed that the system is controllable, although 〈Ni |
Bi2〉 = {0}, i = 1, 2, · · · ,m− 1.

Remarks 3, 5 imply that there is a gap between the necessary condition
and the sufficient condition given in Theorem 1 and Theorem 3 for the con-
trollability of the SLS system (1). The existence of admissible inputs and the
switching laws are coupled, which makes the controllability analysis of SLS
systems complicated. So, it needs more efforts to find out a necessary and
sufficient condition.

4 Complete reachability of SLS systems

In this section we consider the reachable set of SLS systems, and give a
sufficient condition for complete reachability of SLS systems, which is weaker
than that given in Meng and Zhang [14], and can be proved in a similar way
showing Theorems 2 and 3.
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Theorem 4 Under Assumption 1, if 〈Ni | Bi2〉 = Rn−ni , i = 1, 2, · · · ,m,
then the reachable set R of SLS system (1) is a subspace, and

R = Vn.

Theorem 5 Under Assumption 1, if 〈Ni | Bi2〉 = Rn−ni , i = 1, 2, · · · ,m,
and Vn = Rn, then SLS system (1) is completely reachable.

Remark 6 ¿From the proof of Theorem 2, one can see that both the complete
controllability and the complete reachability of the SLS system (1) can be
realized only by using a circulatory switching law.

Remark 7 When Ei = I, i ∈ Λ, the conditions given in Theorem 1, 3 and 5
degenerate to those given in Sun et al [18] for conventional switching systems.

Remark 8 When m = 1, the conditions given in Theorem 1, 3 and 5 de-
generate to those given in Dai [5] for the controllability and reachability of
singular systems.

5 Conclusion

The controllability problem of SLS systems has been investigated in this
paper under the regularity assumption of all subsystems. By using the ex-
pressions of controllable set and reachable set of the circulatory switching
sequence, it has been proved that under certain conditions the controllable
set and the reachable set are the same subspace, and complete controllability
and complete reachability are equivalent. Based on the structure charac-
teristic of the solution of SLS system state equation and the approach of
circulatory invariant subspaces, sufficient conditions for complete control-
lability and complete reachability, and a necessary condition for complete
controllability have been given. The conditions given here are exactly the
same as those of the conventional (non-singular) switched system and nor-
mal (non-switching) singular system cases given in Sun et al [18] and Dai [5]
when the systems degenerate to conventional systems and normal singular
systems, respectively.

6 Appendix

Proof of Lemma 1. 1. For ∀ k > 1, by the definition of Vk+1 we have

Vk+1 =
m∑

i=1

Qi(〈Gi | Qi1Vk〉 ⊕ 〈Ni | Bi2〉) ⊇
m∑

i=1

Qi(Qi1Vk ⊕ 〈Ni | Bi2〉)

⊇
m∑

i=1

Qi(Qi1(Qi(〈Gi | Qi1Vk−1〉 ⊕ 〈Ni | Bi2〉))⊕ 〈Ni | Bi2〉)
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⊇
m∑

i=1

Qi(〈Gi | Qi1Vk−1〉 ⊕ 〈Ni | Bi2〉) = Vk,

where the definition of 〈· | ·〉, the definition of Vk (the ith term of Vk is
enough), and Qi1Qi =

[
Ini

0
]

have been used for getting the first, second
and third ⊇, respectively.

2. If there exists i ≤ n such that Vi = Vi−1, then by the definition of Vi+1

we have

Vi+1 =
m∑

k=1

Qk(〈Gk | Qk1Vi〉 ⊕ 〈Nk | Bk2〉)

=
m∑

k=1

Qk(〈Gk | Qk1Vi−1〉 ⊕ 〈Nk | Bk2〉)

= Vi,

that is, Vi+1 = Vi. Similarly, for all l > i we have Vl = Vi.
3. By 1 and 2 above we can obtain Item 3 directly. ¤

Lemma A1 (Dai [5]) For any given matrix A ∈ Rn×n, there exist continu-
ous functions f0(t), f1(t), · · · , fn−1(t) such that

eAt = f0(t)I + f1(t)A + · · ·+ fn−1(t)An−1.

In order to prove the lemma 2, we need the following lemma, which can
be proved in a similar way showing Lemma 4 in Meng and Zhang [14] subject
to some minor modifications.

Lemma A2 For any given t2 > t1, matrices A ∈ Rr×r, B ∈ Rr×s and
D ∈ R(n−r)×s, nilpotent matrix N ∈ R(n−r)×(n−r) with nilpotent index h,
and y ∈ 〈N | D〉, denote for i = 1, 2,

Ui(y, [t1, t2]) =

{
u(t) : u(t) ∈ Ch−1[t1, t2],

h−1∑
j=0

N jDu(j)(ti) = −y

}
,

Si1 =
{

x1 : ∃ u(t) ∈ Ui(y, [t1, t2]) such that

x1 =
∫ t2

t1
eA(t3−i−τ)Bu(τ)dτ

}
,

Si2 =

{
x2 : ∃ u(t) ∈ Ui(y, [t1, t2]) such that

x2 = −
h−1∑
j=0

N jDu(j)(t3−i)

}
.

Then S11 = 〈A | B〉 = S21 and S12 = 〈N | D〉 = S22.
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Proof of Lemma 2. We first show that under Assumption 1, we have
C(ts) = Cis , and furthermore, if 〈Ni | Bi2〉 = Rn−ni , i = 1, 2, · · · ,m, then

C(tk−1) = Hik−1C(tk) + Cik−1 , k = 1, 2, · · · , s. (A1)

By the definition of C(ts), Lemma A2 and similar to (5), we have

C(ts) = {x(ts) : x(ts+1) = 0, uis(t) ∈ U2(0, [ts, ts+1])}

=





x(ts) : x(ts) = Qis



− ∫ ts+1

ts
eGis (ts−τ)Bis1uis

(τ)dτ

−
his−1∑
k=0

Nk
is

Bis2u
(k)
is

(ts)


 ,

uis
(t) ∈ U2(0, [ts, ts+1])





= Qis(〈Gis | Bis1〉 ⊕ 〈Nis | Bis2〉)
= Cis .

Thus, C(ts) = Cis . We now show (A1). In this case, by Qis−12C(ts) ⊆ 〈Nis−1 |
Bis−12〉, we know that for any x(ts) ∈ C(ts), Qis−12x(ts) ∈ 〈Nis−1 | Bis−12〉,
and there exists consistent initial states x(ts−1). Then by the definition of
C(ts−1), similar to (7) we have

x(ts−1) = Qis−1




e−Gis−1ds−1Qis−11x(ts)
−e−Gis−1ds−1

∫ ts

ts−1
eGis−1 (ts−τ)Bis−11uis−1(τ)dτ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
his−1−1∑

j=0

N j
is−1

Bis−12u
(j)
is−1

(ts−1)




.

This together with the definition of C(ts−1) and Lemma A2 gives

C(ts−1) = {x(ts−1) : x(ts) ∈ C(ts), uis−1 ∈ U2(Qis−12x(ts), [ts−1, ts])}

=





x(ts−1) : x(ts−1) = Qis−1

×




e−Gis−1ds−1Qis−11x(ts)
− ∫ ts

ts−1
eGis−1 (ts−1−τ)Bis−11uis−1(τ)dτ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
his−1−1∑

j=0

N j
is−1

Bis−12u
(j)
is−1

(ts−1)




,

uis−1(t) ∈ U2(Qis−12x(ts), [ts−1, ts])




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= Qis−1((e
−Gis−1ds−1Qis−11C(ts) + 〈Gis−1 | Bis−11〉)⊕ 〈Nis−1 | Bis−12〉)

= His−1C(ts) + Cis−1 .

Thus, (A1) is true for k = s. Similarly, we can prove that (A1) holds for
k = 1, 2, · · · , s− 1.

Using (A1) with the initial value C(ts) = Cis
, we can get the conclusion

iteratively. ¤

In order to prove Lemma 3, we need the following lemmas, where the
proof of Lemma A4 is given in Sun et al [18] when n = r, and can similarly
be obtained when n 6= r.

Lemma A3 (Sun et al [18]) For any given matrix A ∈ Rp×p, subspace B ⊆
Rp and almost all t1, t2, · · · , tp ∈ R, we have

eAt1B + eAt2B + · · ·+ eAtpB = 〈A | B〉.
Lemma A4 For any given matrices A1 ∈ Rn×r, A2 ∈ Rr×r, B1 ∈ Rr×p1 ,
B2 ∈ Rn×p2 and almost all t ∈ R, we have

rank[A1e
A2tB1, B2] ≥ rank[A1B1, B2].

Lemma A5 For any given matrix A ∈ Rn×n, subspaces B ⊆ Rn and W ⊆
Rn, if Qi2W ⊆ 〈Ni | Bi2〉, i ∈ Λ, then for almost all d ∈ R,

dim(A(Q̄i1e
−GidQi1W + Vj) + B) ≥ dim(A(W + Vj) + B), ∀j = 1, 2, · · · , n.

Proof. From the definition of Qi1 and Qi2 it follows that Q−1
i W ⊆ Qi1W ⊕

Qi2W. This gives

AW + B = AQiQ
−1
i W + B ⊆ AQi(Qi1W ⊕Qi2W) + B

⊆ AQi(Qi1W ⊕ 〈Ni | Bi2〉) + B. (A2)

This together with Lemma A4 and Q̄i2〈Ni | Bi2〉 ⊆ Vj , j = 1, 2, · · · , n,
implies that

dim(A(Q̄i1e
−GidQi1W + Vj) + B)

≥ dim(A(Q̄i1Qi1W + Vj) + B)
= dim(A(Q̄i1Qi1W + Q̄i2〈Ni | Bi2〉+ Vj) + B)
= dim(AQi(Qi1W ⊕ 〈Ni | Bi2〉) + AVj + B)
≥ dim(A(W + Vj) + B), ∀j = 1, 2, · · · , n.

We complete the proof. ¤
Lemma A6 Under Assumption 1, if 〈Ni | Bi2〉 = Rn−ni , i = 1, 2, · · · ,m,
then for any given matrix A ∈ Rn×n, subspace F ⊆ Rn and almost all
dk−1 ∈ R,

dim(AC(tk−1) + F) ≥ dim(AC(tk) + ACik−1 + F), k = 1, 2, · · · , s.
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Proof. From Lemma A4, (A1) and AQ̄ik−12〈Nik−1 | Bik−12〉 ⊆ ACik−1 it
follows that for almost all dk−1 ∈ R, k = 1, 2, · · · , s,

dim(AC(tk−1) + F)
= dim(AHik−1C(tk) + ACik−1 + F)
≥ dim(AQ̄ik−11Qik−11C(tk) + ACik−1 + F)
= dim(AQik−1(Qik−11C(tk)⊕ 〈Nik−1 | Bik−12〉) + ACik−1 + F).

This together with (A2) and Qik−12C(tk) ⊆ 〈Nik−1 | Bik−12〉, k = 1, 2, · · · , s,
results in

dim(AC(tk−1) + F) ≥ dim(AC(tk) + ACik−1 + F), k = 1, 2, · · · , s.

¤
Proof of Lemma 3. The proof is given by induction. From Lemma A6

it follows that for almost all d0, d1, · · · , dτ1−1 ∈ R,

dim(AC(t0) + F) ≥ dim(AC(t1) + ACi0 + F)

≥ dim
(
AC(t2) +

2∑

k=1

ACik−1 + F
)

≥ · · ·

≥ dim
(
AC(tτ1) +

m−1∑

k=1

ACik−1 + F
)

= dim(AHiτ1
C(tτ1+1) + AV1 + F), (A3)

where (A1), the definition of V1 and the circulatory property of σc have been
used for the last equality, i.e. the lemma holds for z = 1.

Suppose that (9) holds for z = p, i.e. for any given matrix A, subspace
F of proper dimensions, and almost all d0, d1, · · · , dτp−1 ∈ R,

dim(AC(t0) + F) ≥ dim(AHiτp
C(tτp+1) + AVp + F). (A4)

We now consider the case of z = p + 1. From (A4) it follows that for almost
all dm, dm+1, · · · , dτp+m−1 ∈ R,

dim(AHim−1C(tm) + AV1 + F)

≥ dim
(
AQ̄im−11

1∏

k=0

e
−Gik(τp+1)+m−1dk(τp+1)+m−1Qiτp+m1C(tτp+m+1)

+ AHim−1Vp + AV1 + F
)

(A5)

where Qim−11Q̄im−11 = Ir1 and Q̄im−11 = Q̄iτp+m1 have been used, and

rk =
k∑

j=1

nim+j−2 , k = 1, 2, · · · ,m.
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Continuing the above analysis procedure, we can see that for almost all
dτp+m+1, · · · , d2τp+m, · · · , d(r1−1)(τp+1)+m, · · · , dr1(τp+1)+m−2,

dim
(
AQ̄im−11

1∏

k=0

e
−Gik(τp+1)+m−1dk(τp+1)+m−1Qiτp+m1C(tτp+m+1)

+ AHim−1Vp + AV1 + F
)

≥ dim
(
AQ̄im−11

2∏

k=0

e
−Gik(τp+1)+m−1dk(τp+1)+m−1Qi2τp+m+11C(t2τp+m+2)

+ AQ̄im−11

1∑

j=0

j∏

k=0

e
−Gik(τp+1)+m−1dk(τp+1)+m−1Qim−11Vp

+ AV1 + F
)

≥ · · ·

≥ dim
(
AQ̄im−11

r1∏

k=0

e
−Gik(τp+1)+m−1dk(τp+1)+m−1Qir1(τp+1)+m−11

× C(tr1(τp+1)+m) + AQ̄im−11

r1−1∑

j=0

j∏

k=0

e
−Gik(τp+1)+m−1dk(τp+1)+m−1

×Qim−11Vp + AV1 + F
)

(A6)

where the circulatory property of σc has been used.
Notice from Lemma A3 that for almost all dm−1, dτp+m, · · · ,

d(r1−1)(τp+1)+m−1 ∈ R,

r1−1∑

j=0

e
−Gim−1

( jP
k=0

dk(τp+1)+m−1

)
Qim−11Vp = 〈Gim−1 | Qim−11Vp〉.

Then by (A5)-(A6), Lemma A4 and Lemma A5 we have that for almost all
dm−1, · · · , dr1(τp+1)+m−1 ∈ R,

dim(AHim−1C(tm) + AV1 + F)

≥ dim
(
AQ̄im−11

r1∏

k=0

e
−Gik(τp+1)+m−1dk(τp+1)+m−1Qir1(τp+1)+m−11

× C(tr1(τp+1)+m) + AQ̄im−11〈Gim−1 | Qim−11Vp〉+ AV1 + F
)

≥ dim
(
AC(tr1(τp+1)+m) + AQ̄im−11〈Gim−1 | Qim−11Vp〉+ AV1 + F

)

= dim
(
AHir1(τp+1)+m

C(tr1(τp+1)+m+1) + AQ̄im−11〈Gim−1 | Qim−11Vp〉

+ AV1 + F
)
. (A7)



656 B. Meng and J. F. Zhang

Repeating the above analysis procedures, we have that for almost all
dr1(τp+1)+m, · · · , dr2(τp+1)+m, · · · , drm−1(τp+1)+2m−2, · · · , drm(τp+1)+2m−2,

dim
(
AHir1(τp+1)+m

C(tr1(τp+1)+m+1) + AQ̄im−11〈Gim−1 | Qim−11Vp〉

+ AV1 + F
)

≥ dim
(
AHir2(τp+1)+m+1C(tr2(τp+1)+m+2) + A

0∑

j=−1

Q̄im+j1

× 〈Gim+j
| Qim+j1Vp〉+ AV1 + F

)

≥ · · ·

≥ dim
(
AHirm(τp+1)+2m−1C(trm(τp+1)+2m) + A

m−2∑

j=−1

Q̄im+j1

× 〈Gim+j
| Qim+j1Vp〉+ AV1 + F

)

= dim
(
AHirm(τp+1)+2m−1C(trm(τp+1)+2m) + AVp+1 + F

)

= dim
(
AHin̄(τp+1)+2m−1C(tn̄(τp+1)+2m) + AVp+1 + F

)

= dim
(
AHiτp+1

C(tτp+1+1) + AVp+1 + F
)

This together with (A3) and (A7) implies that (9) holds for z = p+1. Thus,
by the induction principle we complete the proof. ¤
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